### MAY/JUNE 2008 Question & Model Answer IN BASIC ELECTRICITY 194

## **QUESTION 1**

SOLUTION

1(a) Explain the following terms in relation to atomic structure

- (i) Proton
- (ii) Neutron
- (iii) Electron

(b) Three cells of emf 1.5 volts with an internal resistance of  $2\Omega$  each are connected in series to an external resistance of  $3\Omega$ . Calculate

- (i) total electronmotive force of the battery
- (ii) current flowing through the  $3\Omega$



- a.i. The proton is the positively charged elementary particle that forms the nucleus of an atom. It is about 18836 times heavier than the electron. It is a stable unit charge of mass 1.67 x10<sup>-27</sup>kg. For a neutral atom the number of protons is always equal to the number of electron.
- a(ii) The neutron is also an elementary particle in an atom, having zero charge and rest mass of 1.67492 x 10<sup>-27</sup>kg. It is a constituent of the atomic nucleus of an atom. Both the neutron and the proton for ms the central massive part of the atom called the nucleus
- a(iii) The Electron is the negatively charged elementary particles found on the shell or orbit of the atom. It has charge of 1.602192 x10<sup>-19</sup> coulombs and a mass of 9.10956 x 10<sup>-31</sup>kg. The number of electrons is equal to the number of protons in a neutral atom.



This is the current through the  $3\Omega$  resistor

#### **QUESTION 2**

- 2. (a) Define the following and give TWO examples of each
  - (i) Insulator
  - (ii) Conductor
  - (b) An orange of mass 50g falls from rest from a height of 40m. Calculate the kinetic energy of the orange after falling a distance of 25m. (Neglect air resistance Take  $g = 10m/S^2$ ).

SOLUTION

2(a) (i) An insulator is a material that does not allow electrons to pass through it freely. It is therefore a non-conductor of heat and electricity. Examples are plastic, wood, paper, silk, wool, e.t.c.

(ii) A conductor is a material that allows charges to pass through it freely. It is therefore called conductor of heat and electricity. Examples are metals, the human body, the earth, electrolytes, e.tc.



But v = U + gt  
= O + 10 x 2.24  
= 
$$\frac{22.4 \text{ ms}^{-1}}{1}$$

OR

$$V^{2} = u^{2} + 2gh$$
  
 $V^{2} = 0 + 2x10x25$   
 $V^{2} = 500$   
 $V = 500$   
 $= 22.4ms^{-1}$ 

K.E. = 
$$\underline{1}mv^2$$
  
2  
=  $\underline{1}x50x10^{-3} x (22.4)^2$   
2  
=  $25x501.76x10^{-3}$   
=  $12544x1v^{-3}$   
=  $\underline{12.5J}$ 

Question3

- 3. (a) What is a Resistor? Give its symbol
  - (b) List THREE types of Resistors
  - (c) Three resistors of values  $15\Omega$ ,  $20\Omega$  and  $30\Omega$  are connected in series. If a voltmeter connected across the  $20\Omega$  resistor reads 90V, calculate:
    - (i) total resistance of the circuit
    - (ii) current in the  $30\Omega$  resistor
    - (iii) Voltage drop in the  $15\Omega$  resistor
    - (iv) Power consumed by the circuit

SOLUTION

3(a) Resistor is an electrical component or electrical conductor which is constructed to have a precise or definite value of resistance. As an electrical component, it forms opposition to the free flow of electric current. Resistor is made with a length of resistance wire such as constantan and Nichrome. the symbol of a resistor is given as



- (b) Types of Resistors
  - (i) Wire-wound Resistor (Fixed Resistor)
  - (ii) Moulded -carbon Resistor
  - (iii) Rheostat/potentiometer/variable Resistor
  - (iv) High stability resistor (carob film Resistor
- (C)



(i) Total Resistance  $R_T$   $R_T = R_1 + R_2 + R_3$  (series) = 15 + 20 + 30 $= \underline{65\Omega}$ 

(ii) Current in the  $30\Omega$  resistor. The current across the three resistors  $15\Omega$ ,  $20\Omega$  and  $30\Omega$  is the same because they are in series. Current in the  $20\Omega$  resistor of voltage drop 90V is

I = 
$$\frac{V_2}{R_2}$$
 =  $\frac{90}{20}$  = 4.5A

4.5A | = Current in the  $30\Omega$ resistor is 4.5A (iii) Voltage drop,  $V_1$  in the 15 $\Omega$  resistor IR₁ V<sub>1</sub> = =4.5 x15 67.5V Similarly, the voltage drop in the  $30\Omega$  resistor is  $V_3 = IR_3 =$ 4.5x30 =135v Total p.d,  $V_T = V_1 + V_2 + V_3$ ... = 67.5 + 90 + 135 <u>292.5</u>v = Power consumed by the circuit is P (iv)  $\sqrt{2}/P$  or 1<sup>2</sup>D 117 or Ρ F

$$P = IV = 4.5 \times 292.5 = 1316.25W$$
  
= V<sup>2</sup>/R = (292.5)<sup>2</sup> = 1316.25W  
= I<sup>2</sup>R = (4.5)<sup>2</sup> × 65 = 1316.25W

Question 4

- 4. (a) Define capacitance and state its unit of measurement
  - (b) Enumerate FOUR types of capacitors
  - (c) Three capacitors of values 5μf, 15μf and 30μf are connected in series. Another capacitor of value 50μf is connected in parallel with the series group across a 200V d.c. source. Calculate.
    - (i) total capacitance of the series group
    - (ii) total capacitance of the circuit
    - (iii) total charge stored in the capacitor
    - (iv) energy stored by the  $50\mu$ f capacitor

# Solution

4a. The ability of a capacitor to store electric charges is known as capacitance. It can also be defined as the ratio of the amount of electricity (charge), Q transferred from one plate to the other, to the potential difference produced between the plates. The symbol is C and it is given as C = Q/VThe unit of measurement of the capacitance is Farad F (coulomb per

volt).

- 4(b) Types of Capacitors
  - (i) Paper capacitor
  - (ii) Electrolytic capacitor
  - (iii) Ceramic capacitor
  - (iv) Silver mica capacitor
  - (v) Plyester capacitor & poly carbonate capacitor
  - (vi) Tantalum capacitor
  - (vii) Polystyrene capacitor

4(c)



(ii) Total capacitance of the circuit  $C_{T} = C_{s} + C$  = 3.33 + 50  $\underline{53.33}\mu f$  (iii) Total charge stored in the capacitor

$$Q_{T} = C_{T}V$$
  
= 53.33 x 200  
= 1066µC or 1066 x 10<sup>-6</sup> or 1.07 x 10<sup>-2</sup>C

(iv) Energy stored by the  $50\mu$ f capacitor.

$$W = \frac{1}{2} C V^{2}$$
  
=  $\frac{1}{2} x 50 \mu f x (200)^{2}$   
=  $25 x 40000 x 10^{-6} J$   
=  $1000 000 X 10^{-6} J = 1.0 J$ 

## Question 5

5 (a) Define the following terms in relation to alternating current and state their

symbols

- (i) inductive reactance
- (ii) impedance
- (b) A 200 $\mu$ f capacitor is connected in series with a 60 $\Omega$  resistor. The combinations is connected to a 200V, 50Hz supply. Calculate:
  - (i) capacitive reactance of the capacitor
  - (ii) inpendance of the circuit
  - (iii) current
  - (iv) power factor

Solution

- 5a(i) Inductive Reactance is the opposition to alternating current due to the presence of an inductor in the circuit. It is given as  $X_L$  and can be obtained from the relationship that,  $X_L = 2\pi f L$ . The symbol is  $X_L$  and its unit is ohms.
- a(ii) Impedance is the effective or total opposition to alternating current due to the presence of an inductance coil (an inductor), the capacitor and a resistor in an A.C. circuit.

The impedance is represented with a symbol Z and its unit is ohms.



## Question 6

Draw the following symbols to British Standards (BS):

